On analogues of Poincaré-Lyapunov theory for multipoint boundary-value problems

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adjoints of Multipoint-integral Boundary Value Problems

The dual system to Ly=y'+Py, J_AtyOi)+ f1 K(t)v(t)dt = 0 is found when the setting is ¿°(0,1), 1 /2 -1 l/jj dt Kp' denote those vectors in X which are absolutely cont...

متن کامل

Triple Positive Solutions for Multipoint Conjugate Boundary Value Problems

For the nth order nonlinear differential equation y(n)(t) = f(y(t)), t ∈ [0, 1], satisfying the multipoint conjugate boundary conditions, y(ai) = 0, 1 ≤ i ≤ k, 0 ≤ j ≤ ni − 1, 0 = a1 < a2 < · · · < ak = 1, and ∑k i=1 ni = n, where f : R→ [0,∞) is continuous, growth condtions are imposed on f which yield the existence of at least three solutions that belong to a cone.

متن کامل

An Efficient Method for Solving Multipoint Equation Boundary Value Problems

In this work, we solve multipoint boundary value problems where the boundary value conditions are equations using the Newton-Broyden Shooting method (NBSM).The proposed method is tested upon several problems from the literature and the results are compared with the available exact solution. The experiments are given to illustrate the efficiency and implementation of the method. Keywords—Boundar...

متن کامل

L2-transforms for boundary value problems

In this article, we will show the complex inversion formula for the inversion of the L2-transform and also some applications of the L2, and Post Widder transforms for solving singular integral equation with trigonometric kernel. Finally, we obtained analytic solution for a partial differential equation with non-constant coefficients.

متن کامل

Multiple Solutions of Generalized Multipoint Conjugate Boundary Value Problems

We consider the boundary value problem y(n)(t) = P (t, y), t ∈ (0, 1) y(ti) = 0, j = 0, . . . , ni − 1, i = 1, . . . , r, where r ≥ 2, ni ≥ 1 for i = 1, . . . , r, ∑r i=1 ni = n and 0 = t1 < t2 < · · · < tr = 1. Criteria are offered for the existence of double and triple ‘positive’ (in some sense) solutions of the boundary value problem. Further investigation on the upper and lower bounds for t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 1966

ISSN: 0022-247X

DOI: 10.1016/0022-247x(66)90012-6